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ABSTRACT 

A simple graphical technique has been developed for the determina- 
tion of paraboloidal antenna efficiency as a function of the feed-system 
radiation characteristics. The technique, based on graphical integration 
of the paraboloid surface current density, is applied in detail to the 
Cassegrainian feed system-a system which is used with low-noise 
antennas to maximize the ratio of antenna efficiency to system noise 
temperature. The discussion includes an analysis of errors involved in 
the calculation of antenna efficiency: polarization loss, aperture phase 
errors, azimuthal sampling errors, and aperture blockage. 

1. INTRODUCTION 

With the advent of interplanetary space communica- 
tions systems, and their critical dependence on the 

antennas, it has become pertinent to develop new ana- 
1 performance of very large ground-based paraboloidal 

lytical techniques for relating feed radiation patterns to 

developed analytical techniques for approximating this 
relationship for a few simple types of feed radiation pat- 

l 

b 
I 
I 

I 

secondary pattern gain. A number of workers have 

terns (Ref. 1, 2). Unfortunately, the functions assumed 
for the feed radiation patterns seldom bear a close rela- 
tionship to those obtained in practice. This may be espe- 
cially true in low-noise antennas in which shaped-beam 

I 

or Cassegrainian feed systems are used to maximize the 
ratio of antenna efficiency to system noise temperature. 

It appears that an accurate but simple graphical tech- 
nique must be developed to relate experimental feed 
radiation characteristics to the over-all antenna gain. 
In Sec. I1 such a technique is developed, based on 
graphical integration of the paraboloid surface current 
density. In Sec. I11 the method is applied to the special 
but important case of a Cassegrainian system. In Sec. IV 
a brief analysis of the approximations and errors is made. 

1 
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II. THE GRAPHICAL INTEGRATION TECHNIQUE 

The paraboloidal reflector antenna geometry is depicted 
in Fig. 1. The reflector surface itself is characterized by 
the spherical coordinates p, $, and (, with the origin at 
the focal point F. The surface is also characterized by the 
rectangular coordinate system X, Y, and 2, with the 
origin at the vertex of the paraboloid. The secondary 
radiation is described in the spherical coordinate system 
R, 8 ,  and 9. 

i 

I 

Figure 1. Paraboloidal antenna geometry 

The expression for antenna efficiency, 9, derived in 
Appendix A, is 

(1) 

In this expression, Go, is the feed-system maximum 
gain relative to the isotropic level, and E,, is a particular 
feed radiation pattern obtained in a plane defined by 
( = constant. The assumptions and approximations im- 
plicit in Eq. (1) are described in Sec. IV. In general, the 
accuracy of Eq. (1) appears to be comparable to experi- 
mental measurement techniques, at least for the case of 
very large antennas. 

As a practical matter, it is desirable to have a simple 
graphical technique for computing r) as a function of 
the parameters q, Go,, and E,,. Three different situations 
may exist. In the first, all three parameters are unknown 
and varied to optimize Eq. (I), possibly subject to some 
constraint such as low excess-noise temperature. This 
problem is extremely complex and beyond the scope of 
this report. The second situation involves the choice of 
E, ,  (and hence of G,,,) to optimize Eq. (1) when the 

aperture angle + is fixed. This case will be touched upon 
in connection with the Cassegrainian feed system, but 
will not be considered in great detail. The third situation, 
in which is fixed and E , ,  and Go, have been experi- 
mentally determined, is the principal subject under con- 
sideration in this report. In this case it is possible to 
use a rather simple graphical integration technique to 
perform the integration indicated in Eq. (1). 

Consider a rectangular plot as shown in Fig. 2. The 
integrand of Eq. (1) is plotted linearly as the ordinate h 
and the aperture angle is plotted linearly as the abscissa W .  

The incremental area of a small vertical strip will be 
given by 

AA = haw (4 
A new abscissa coordinate, &(I/), is now defined such that 

htan - Aw = haw'($) (5) (3) 

I 

- 

0 
0 

w 

Figure 2. Aperture integration geometry 

Passing into the limit of zero increment size and inte- 
grating both sides of Eq. (3), one obtains 

or 

( 5 )  

With the aid of Eq. (5),  a weighted graph paper may 
be constructed such that if E,, is plotted, the area under 
the curve will be proportional to the corresponding inte- 
gral in Eq. (1). A sample of this type of paper is shown 
in Fig. 3. The integration may be conveniently performed 
to high accuracy with an ordinary desk planimeter. 

2 
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In order to establish the numerical value of the inte- 
gral, it is necessary to know the value of the integral 
for E,,, = 1 or, in other words, the value of 

* *  
I , , ,  (i) = tan T d +  (6) 

A graph of I,,,, (@) from 0 to 90 deg is shown in Fig. 4. 

MAXIMUM APERTURE ANGLE Y, deg 

Figure 4. Plot of the function I,, (*I vs * 
The calculation, therefore, of the efficiency 'I involves 

the performance of the following steps: 

1. Determination by measurement or otherwise of the 
absolute feed gain G,,,. 

feed radiation patterns E,, (I#, 6 ) .  

malization with the aid of Eq. (6). 

2. Determination by measurement or otherwise of the 

3. Graphical integration of the feed patterns and nor- 

4. Calculation of the efficiency by Eq. (1). 

As a less accurate alternative to measurement of G,,,, 
the power patterns E?,(+) may be integrated to obtain 
G,(f) (assuming negligible losses). Some error will be 
introduced because of the cross-polarization component. 
This point is discussed in more detail in Sec. IV. The 
feed gain will be given by 

"J 0 s in+d+ 

In a manner analogous to that of Eq. (2) through (6), 
it is possible to construct a weighted graph paper to 
provide a means of directly evaluating Eq. (7) with a 
planimeter. A sample of this paper is shown in Fig. 5. 
The vertical scale is also weighted so that the relative 
voltage pattern E,, may be plotted directly. 

4 
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111. APERTURE INTEGRATION FOR A CASSEGRAINIAN SYSTEM 

The increasing popularity of the Cassegrainian optics 
system at radio frequencies has lent new importance to 
its evaluation. The unusual ability of this type of feed 
system to produce high efficiency and low back-radiation 
was first recognized by Foldes (Ref. 3). Further extension 
of this early work has led to low-noise antenna system 
applications (Ref. 4). A recent and comprehensive paper 
by Hannon (Ref. 5) describes the general properties of 
the system, as well as some experimental results. 

The efficiency of a Cassegrainian system as a function 
of its size, geometrical parameters, and feedhorn design 
is of key importance. A detailed analysis of the problem 
from the physical optics standpoint is desirable but diffi- 
cult, although some work has been done toward this end 
(Ref. 4, 6). For the important case in which the subre- 
flector is many wavelengths in size, geometrical optics 
yields sufficiently accurate answers for prototype feed- 
horn and subreflector design. With the prototype feed- 
horn and subreflector, the necessary data for Eq. (1) can 
be determined experimentally. Thus, the over-all effi- 
ciency may be relatively accurately predicted prior to 
final measurement of the antenna system. 

The geometry of the Cassegrainian system is shown in 
Fig. 6. A feedhorn whose phase center is at the point F’ 
illuminates the subreflector, which, in turn, illuminates 
the paraboloid. The locus of points with a constant dif- 

of revolution. Since F is the focal point of the paraboloid, 
this geometry will result in equal ray length from the 
point F’ to any point in the aperture plane. Also, all rays 
will emerge parallel to the axis of the system. Thus, the 
system transforms a spherical wavefront with center at 
F‘ into a new spherical wave with center at F (within the 
limitations of geometrical optics that all radii of curva- 
ture and regions of large amplitude change are very large 
compared to a wavelength). As will be seen later, the feed- 
horn amplitude illumination function is also expanded 
and reshaped. It is this latter property that makes prac- 
tical the achievement of unusually high efficiency. 

1 

i 
I ference of the distance from F and F’ is a hyperboloid 4 

The geometry of the hyperboloid in the Cartesian 
coordinate system shown in Fig. 6 is given by 

HYPERBOLOID 

Figure 6. Cassegrainian optics geometry 
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or 

The angles y and + are related by 

tan (5) = M tan (+) 

(9) 

where M is a constant called the magnification and is 
usually large compared to unity. 

The transformation of the feedhorn gain function 
GH (7, tH) into the subreflector gain function Gr (+,[) 
will now be investigated on a geometrical optics basis. 
In this approximation an incremental ray bundle of solid 
angle ARH is defined, which is transformed by the hyper- 
boloid into a new incremental ray bundle AQ. By defini- 
tion no energy crosses the walls of these two bundles. 

The feed power radiated per unit solid angle is given by 

and the subreflector radiated power per unit solid angle 
is given by 

Since no energy crosses the side boundaries of the 
ray bundles, the following relationship exists: 

p H  (7, '!H) AnH = p (+, 5 )  An (13) 
or 

(14) 

where 

1' L G H  (7, t H )  sin Y dy d t H  

PTF 12' "GH (7, [ H )  sin Y dy  &H 

(15) - P T  -- 

It is now necessary to evaluate the quantity AQH/AR. 
The solid angle AR,, is bounded by the four rays which 
are +Ay/2 and +A&/2 from the central ray. Thus 

AnH =: Ay AtH (16) 

an z A+ a5 (17) 

Similarly, 

NOW from Fig. 6 it can be seen that 

(19) 

where AZ, is an incremental distance on the hyperboloid. 
Since AZ, bisects the angle between F'P and FP, then 

d r  A + =  -*n- r2  
1'2 

Combining Eq. (16) through (20) yields 

From Fig. 6 it can be noted that 

r rl = - 
sin y 

(23) 
r 

r2 = - sin + 
Combining Eq. (14), (21), (22), and (B), 

where $ and y are related by Eq. (10) and tH = 5. 
It was assumed, however, in the derivation of Eq. (1) 

(see Eq. A-6 and A-7 in Appendix A) that the total 
antenna power was delivered into the radiation defined 
by Eq. (24). To convert Eq. (24) into an "equivalent" gain 
function GI that may be used in Eq. (l), it is necessary 
to multiply Eq. (24) by P T F / P T :  

where + and y are related by Eq. (10) and tH = 5. If, as is 
usually the case, y is less than 15 deg, then with only 
2% maximum error, 

Combining Eq. (lo), (E), and (26) gives 

. .  
(27) 

.A plot of the function sec4(+/2) is shown in Fig. 7. 
The significance of Fig. 7 is that the Cassegrainian 
geometry tends to weight the outer portions of the aper- 
ture more heavily than the inner portions. This effect is 
beneficial in obtaining high e5ciency, since the parabo- 
loid spillover may be independently adjusted by means 

7 
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APERTURE ANGLE q, deg 

Figure 7. Cassegrainian weighting function sec" (+I21 

of the hyperboloid aperture angle. A further beneficial 
factor can be observed in Fig. 8, which is a plot of 
Eq. (10). It can be seen that the relatively flat central 
portion of the feedhorn pattern tends to be expanded 
onto a disproportionately large portion of the paraboloid 
aperture. 

It is interesting to consider the feedhorn radiation pat- 
tern which would yield uniform aperture illumination 
and hence maximum efficiency (assuming P,, = PT). It 
can be seen from Eq. (A-2) (and has been pointed out 
by Silver) that uniform illumination is obtained if 

G, (It, 5 )  = 0 

From a comparison of Eq. (27) and (28) it can be seen 
that uniform aperture illumination will be present if 

In the case of a 90-deg aperture angle ( f / D  = 0.25), for 
example, uniform hyperboloid illumination results in uni- 
form paraboloid aperture illumination. To achieve the 
same result from the focal point, a 6-db reverse taper 
would be required. It should be noted, however, that in 
principle a focal-plane feed could be built which would 
have the same source current distribution as the hyper- i 
boloid in a Cassegrainian system. \ 
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Figure 8. Relationship between My and + 
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IV. ANALYSIS OF ERRORS 

Several possible sources of error are analyzed in this 
Section. The following errors are considered: polarization 
loss, aperture phase deviations, azimuthal sampling error, 
and aperture blockage. 

In general, it is not practical to assign an exact value 
to the errors, but only to indicate their approximate val- 
ues. However, since sound design will reduce these errors 
to a small value, a relatively inaccurate determination 
of the errors can nonetheless result in highly accurate 
determination of the over-all efficiency. 

A. Polarization Loss 
It has been pointed out by Silver and also by Cutler 

(Ref. 7) that a cross-polarized component will exist in 
the aperture which does not contribute to the axial sec- 
ondary radiation and which therefore introduces a loss 
of efficiency. This efficiency loss is a function of the feed 
radiation properties. In Appendix B this loss is analyzed 
for the case of a small dipole feed, parallel to the axis X 
at the second focus of a Cassegrainian system. In this 
case the aperture field components are given by 

(30) 

(31) 

For the case of a dipole feed at the focal point, the 

(32) 

- E x  = 1 - cos2[(1 - c o s y )  
E" Cassegrainian 

- = 3 sin 26 (1 - cos y )  
E,  

Feed 

angle y is replaced by the aperture angle q: 

1 - cos2 5 (1 - cos +) E,= 
E O  Focal-Point 

Feed 
5 = -+sin2[(1 -cos+) 
E" (33) 

A question of semantics arises in the interpretation 
of Eq. (30) through (33). In the derivation of these rela- 
tionships a specific type of feed radiation function-that 
of a small dipole-is assumed. It is sometimes erroneously 
concluded that Eq. (32) and (33) inevitably dictate low 
efficiency for a deep paraboloid. That this is not true 
can be easily seen by comparison of Eq. (30) and (31) 
with (32) and (33). In the former case, the polarization 
loss is small, since the angle y is small. Furthermore, it is 
theoretically possible to design a focal-point feed with 
the same radiation pattern (and hence polarization loss) 
as the hyperboloid in a Cassegrainian feed system. Thus, 
it does not appear appropriate to combine directly Eq. 
(32) and Eq. (1) to determine polarization loss. Rather, 

a more direct measure of the polarization loss is achieved 
by comparing the efficiency obtained by integration of 
Eq. (32) across the aperture to that obtained by integra- 
tion of the total field across the aperture. Thus, from 
Eq. (A-11) the polarization loss factor qp is given by 

By appropriate choice of the f/D ratio and/or the feed 
system, the following is generally true: 

EY E x  - <<- 
E o  E,, (35) 

In this case, 

It is convenient to define two quantities, I, and I , ,  as 
follows: 

Combining Eq. (a), (36), (37), and (38) yields 

(39) 

Since both I, and I, are positive real quantities and 
I, << I,, we have 

Also, from Eq. (32), (33), (37), and (38), 

9 
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In order to express Eq. (43) in a simpler form, it is 
convenient to use the approximation 

(44) +' cos+= 1 - 1 

This approximation is in error by only 5% for values of + 
as large as 60 deg. Combining Eq. (43) and (44), 

An additional approximation will now be made: 

tan L =: + (46) 2 

This approximation is in error by 8% at 60 deg, unfortu- 
nately in the same direction (downward) as that of 
Eq. (44). Combining Eq. (45) and (46), 

J o  

Performing the integration gives 

(47) 

where is measured in radians. Combining Eq. (41) and 
(48) yields the approximate polarization loss for a focal- 
point, dipole-like feed: 

Combining Eq. (50) and (51), 

From Eq. (41) we have 

1 tan4 (E) - [ 4 tan2 (2) + In cos (;)I 
In I sec (T) I 

1 2 2 
TP=: 1 - - 

2 x 4  

(54) 

The polarization loss for various values of M is shown 
in Fig. 9. It can be seen that the polarization loss is 
exceedingly small for M > 2 (usually 2 < M < lo), even 
for very deep paraboloids. There is some experimental 
verification of this fact: Foldes (Ref. 3) has reported 
high over-all aperture efficiencies for the case of * = 104 
deg. The case of M = 1 corresponds to a focal-point feed 
and was plotted from Eq. (49). It can be seen here that 
the polarization loss rapidly becomes serious as a 60-deg 
aperture angle is approached. 

It is clear from Eq. (48) that the approximation used in 
Eq. (40) and (41) is very good. 

The approximate polarization loss in a Cassegrainian 
feed system is easily derived. For this case Eq. (45) has 
to be modified: 

MAXIMUM APERTURE ANGLE 9, deg 

Figure 9. Cross-polarization loss 

From Eq. (10) it can be seen that It should be pointed out that normal measurement of 
the linear polarized feed patterns GI, ($, tn) automatically 
takes the polarization loss into account. If the feed and 
illuminator polarization are aligned on axis ($ = 0), then 

1 0  
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at other values of + the illuminator will respond only to 
the desired feed polarization component. The measured 
gain of the feed Got will, on the other hand, be deter- 
mined by power radiated in all polarization components. 

B. Aperture Phase Errors 
In the derivation of Eq. (l), it is assumed that the 

phase front from the paraboloid focus is truly spherical- 
i.e., that there are no phase deviations-and furthermore 
that the paraboloid has no surface deformities. This 
happy situation is never completely realized in practice. 
In general, both surface deviations and feed phase-front 
errors will exist. 

The problem of normally distributed aperture phase 
errors has been treated by Ruze (Ref. 8)  and also by 
Robieux (Ref. 9). Their analyses are specifically directed 
toward tolerance errors in the paraboloid, but are equally 
applicable to the feed phase-front errors. Unfortunately, 
a shallow paraboloid is assumed, which makes their 
results somewhat pessimistic for the case of a low j / D  
antenna. For a small rms phase error of 6 radians, Ruze 
derives the approximate tolerance efficiency factor qr :  

'I* =: E-&= ( 5 5 )  

In Fig. 10 the factor vT is shown as a function of the 
paraboloid aperture error in degrees. This Figure is a 
plot of Eq. (55) and, hence, assumes a shallow reflector, 
uniform illumination, and a normal error distribution. 

The block diagram of a typical setup for phase-front 
measurements is shown in Fig. 11. Typically the results 
of such measurements indicate two separate components 
of error, a more-or-less quadratic deviation, and a high- 
frequency semiperiodic error. The former source of error 
has been treated by Silver and others and, in practice, 
can be largely corrected by feed defocusing. The high- 
frequency component is virtually inevitable in the case 
of Cassegrainian or shaped-beam feeds in which phase 
ripples occur at an angular frequency corresponding to 
the hyperboloid (or shaped-beam feed) size in wave- 
lengths. The distribution across the aperture may be 
more nearly sinusoidal than normal. The use of Eq. (55) 
will, in this case, yield a somewhat pessimistic result 
since large phase excursions above the rms level are less 
probable for a sinusoidal distribution than for a normal 
distribution. Equation (55) may be reasonably used for 
small deviations, however, without introducing undue 
error in the over-all efficiency. 

AMPLIFIER 

TEST 

I nELIXIYoDUUTKY 

I PnASE OUTRlT I 

RMS APERTURE PHASE ERROR, deg 

Figure 10. Efficiency loss due to random 
aperture phase errors 

The serrodyne system (Ref. 10) may be conveniently 
used to measure the feed-system phase characteristics. 

VARIABLE I 
ATTENUATOR 

Figure 1 1. Serrodyne system for the measurement 
of the feed phase front 

C. Azimuthal Sampling Errors 
In using Eq. (1) to determine aperture efficiency, one 

is approximating the azimuthal or dependence by a 
discrete sampling process. This procedure is used for 
pattern measurement convenience. An error is, of course, 
introduced by this procedure; but the approximate mag- 
nitude of the error may be estimated. 

It is convenient in the error analysis to assume that 
the feed radiation function is separable into two func- 
tions which are functions only of either + or <. With this 

1) becomes assumption, Eq. 

T )  = cot2 (I) Go, 

11 
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The sampling error vs is thus given by 

or 

or 

where A# = 2a/N. It is possible to expand the function 
E f t  (#) in a Taylor series about the point = 5%: 

(59)  + . . .  

Integrating both sides of Eq. (59) between the points 
tn + (AU.2) and tn - (A6/2) results in 

Neglecting higher-order terms, 

or 

Combining Eq. (58) and (62), 

Now, making the approximation that the integral in 
Eq. (63) is given by the numerator in Eq. (58), 

17s = 

It can be seen from Eq. (65) that the error is controlled 
basically by the ratio of the average value of the second 
derivative of the azimuthal function to the average value 
of the function. Furthermore, the error is rapidly de- 
creased by increasing the number of cuts, or samples. 

D. Aperture Blockage 

It generally happens that obscuration of the paraboloid 
aperture will result from the presence of the feed system 
and its support structure. This problem may be con- 
veniently divided into two cases: in the first, the obstacle 
is interposed between the focal point and the surface 
of the paraboloid; in the second, the obstacle is between 
the surface of the paraboloid and a plane perpendicular 
to the axis and in front of the antenna. In unusual 
circumstances an obstacle may be in both categories, 
although sound design will generally avoid this situation. 

Blocking of the first type may be legitimately consid- 
ered part of feed-system radiation characteristics. As 
such it may be either evaluated by geometrical optics 
or (preferably) included physically in the feed-system 
pattern-determination model. 

Blockage of the second type may be conveniently eval- 
uated only if the cross sections of the obstacle are mod- 
erately large in terms of a wavelength. In this case, it is 
reasonable to assume that a well-defined shadow region 
will occur on the aperture. The procedure then is to 
determine the shadow region on the aperture and to 
assign zero intensity to the corresponding part of Gfe (JI, #). 
Since over-all blockage areas typically correspond to only 
1 5 %  of the antenna aperture, the accuracy of the antenna 
efficiency is not unduly sensitive to the accuracy of the 
blockage calculation. 

1 2  
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i V. CONCLUSION 

j A simple graphical technique has been developed for 
the determination of paraboloidal antenna efficiency as a 
function of the feed-system radiation characteristics. The 
technique has been applied in detail to the Cassegrainian 
feed system. In this system, the transformation of the 
feed radiation pattern into the aperture illumination 
function has been analyzed and shown to possess certain 
desirable properties from the standpoint of efficiency. 

A short analysis has been made of various errors 
involved in the &ciency calculation. The effect of cross- 
polarized field components in the aperture is shown to 
be small for Cassegrainian systems or their shaped-beam 
feed equivalents. The effect of discrete sampling of non- 
symmetrical feed patterns has been analyzed and the 
corresponding errors evaluated. Finally, methods for 

i 
j. 
c 
: 
t 
I r 

determining the &ect of aperture phase errors and 
obstacle blockage have been discussed. 
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NOMENCLATURE 

a, c 

ax, aY, ay, 

constants describing the hyperboloid 

unit vectors in the X, Y, y, 6, $, and directions } a(, a’#> a<H 

AA an incremental area 
D diameter of the paraboloid 
ei, X component of the paraboloid aperture field 

E;5, E;i  (in) first and second derivatives with respect to 5 
E ,  dipole field strength for polarization analysis 

E f t  (6) feed pattern for a particular value of $ 

E,, (I/, &) field-strength feed pattern for a particular azimuthal coordinate 
E,, EY X and Y components of E, 

dipole field-strength components in the X, Y, T,  y, tu ,  $, and 5 

E (F’) vector dipole field strength 
E (Ro, 0, 0) antenna-system axial-vector far-field strength 
E (Ro, 0,O) antenna-system far-field strength 

E* (R,, 0,O) complex conjugate of E (R,,, 0,O) 

f focal length of the paraboloid 
F focal point of the paraboloid 

F’ second focal point of the hyperboloid 
G gain of the antenna system 

E+, E g ,  Ey’ E,pl Et 1 directions 

(” ‘) }gain functions for the subreflector 
G; (I/, 5 )  

gain function for the feedhorn 
maximum power gain of a focal-point feed system 
ordinate of the aperture integration plot 
aperture integral for uniform illumination 
integrals for polarization analysis 

rn 
propagation constant 
incremental distance on the hyperboloid 
magnification factor 
vector normal to the reflector surface 
number of feed-pattern azimuthal samples 
arbitrary point on reflector surface 
power flux from the subreflector 
antenna-system axial far-field strength 
power flux from the feedhorn 

14 
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NOMENCLATURE (Cont’d) 

total power radiated by the feedhorn 
total power radiated by the subreflector 
radial coordinate from the antenna axis 

polar coordinates of the hyperboloid 
magnitudes of rl and r, 
vector distances from the hyperboloid to its foci 
polar coordinates of the far field 
distance to point in the far field 
abscissas of the aperture integration plot 
incremental width on the aperture 
rectangular coordinates of the paraboloid 
rectangular coordinates of the hyperboloid 
maximum half-angle subtended by the hyperboloid 
incremental changes of the coordinates 
aperture phase error 
permittivity 
over-all aperture efficiency 
polarization-loss efficiency factor 
sampling-error efficiency factor 
phase-deviation efficiency factor 
wavelength 
permeability 
azimuthal coordinate of a particular feed pattern 
polar coordinates of the paraboloid 
distance from the paraboloid surface to its focus 
maximum aperture half-angle of the paraboloid 
angular frequency 
incremental solid angles 

15 
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APPENDIX A 
Derivation of the Aperture Integral 

The method used here to calculate the aperture integral is that used by Silver 
(Ref. 1, Chap. 12), m d e d  to permit variation in the 5 coordinate, which is 
generally observed in practice. The paraboloid geometry is depicted in Fig. 1. 
By expressing the current density on the surface of the paraboloid as a function 
of the feed gain function G, ($/, t), and projecting this current density onto the 
aperture plane of the paraboloid, Silver derives an expression for the axial field 
intensity E ( Ro, 0,O) : 

In this case, h e a r  polarization is assumed. Normally, the factor e;,, which is 
the X component of the aperture plane polarization, is assumed constant and 
equal to unity. For paraboloids whose aperture angle * approaches 90 deg, this 
approximation is poor. The problem can be circumvented, however, by measuring 
the pattern Gf(+) as outlined in Sec. IV. For this reason, ei, will be eliminated 
from further consideration. 

The equation of the paraboloid is given by 

2f = f s &  (.k) 
= 1 +cos$/ 

Combining Eq. (A-1) and (A-2) gives 

(A-3) 
The squared magnitude of the electric field is given by 

p ( % , O , O ) I ' =  E(%,O,O)E*(%,0,0) 

The power per unit solid angle P ( 0 , O )  radiated in the forward direction is 
given by 

P (0,O) = (t>' P IE (Roy 0,O) I' (A-5) 

Combining Eq. (A-4) and (A-5) and substituting 4r2/A2 for d p c ,  

The antenna gain is given by 

(A-6) 

(A-7) 
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Combining Eq. (A-6) and (A-7) yields 

Now the following paraboloid relationship is introduced: 

D *  
4 2  

f = -cot- (A-9) 

Combining Eq. (A-8) and (A-9) gives 

Introducing the concepts of the relative voltage pattern, E ,  (+, [), and the feed 
gain, G I ,  

The aperture is now divided into N equal segments such that E , ( + , [ )  is 
essentially constant over the segment in the 5 direction and equal to E,,(+,&,). 
Thus, 

or 

where the antenna efficiency is given by 

(A-13) 

Equation (A-14) is termed the aperture illumination integral. The choice of the 
number N and the other approximation errors are discussed in Sec. IV. 

1 8  
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APPENDIX B 
Polarization Transformation of the Cassegrainian Feed System 

The coordinate system used for the polarization transformation analysis is 
shown in Fig. B-1. The field at the point F is assumed to be given by 

E (F') = E&x P - 1 )  

The projection of t h i s  vector onto the line defined by the intersection of the 
2 = 0 plane and the ( = constant plane is given by 

E, (("9 Y = 0 )  = Eo C 0 S t " a r  

E, ([H, Y) = Eo COS [H COS Y a /  

03-2) 

(B-3) 

(B-4) 

The projection of this vector onto a plane normal to the line FP is given by 

Similarly it can be seen that 

((H, 7) = EO sin (Hat,, 

HYPERBOLOID 

Figure B- 1. Polarization analysis geometry 

It was shown in Eq. (18) through (20) that the relative intensities of the ( and 11 
components of the field are preserved in reflection from the hyperboloid. This can 
also be easily seen from consideration of the normal and tangential field com- 
ponents at the hyperboloid surface. Thus, 

E* = -E, cos 5 cos yaq 

Et = -Eosin( - at = Eosin(ac 

(B-5) 

(B-6) 

The minus signs in Eq. (B-5) and (B-6) arise from the change of coordinates 
and the zero tangential field restriction. 

Since the paraboloid will transform rays from the point F into rays normal 
to the X-Y plane, the polarization in the aperture plane will be given by the 
X and Y components of Eq. (B-5) and (B-6). From Fig. B-1 it can be seen that 

19 
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E, = (E+*a+cost  - E(*aesinI)a,  

& = (&*aJIsinf + Eq*aecos[)q 

Combining Eq. (B-5), (B-6), (B-7), and (B-8) gives 

-- Ex - (-coszicosy - sinztla, 
E O  

I 

and 

- = ( - s intcos icosy  + sintcost)a,  
E" 

(B-9) 

(B-10) 

It should be noted that Eq. (B-9) and (B-10) are not functions of the aperture 
angle JI, except insofar as y and $ are related in Eq. (10). 
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